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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract 

A finite elastic hollow and solid cylinders are considered. The bottom faces of the cylinders are fixed, the upper faces are free 
from stress. The tangent axisymmetric loading is applied along their cylindrical surfaces. This leads to the torsion axisymmetric 
deformation. A system of N ring – shaped cracks is situated inside the cylinders parallel to the cylinder’s axis. It is supposed that 
the branches of the cracks are free from stress. It is necessary to construct the formulas for the stress intensity factor calculation 
and investigate the stress state of a solid. The initial boundary value problem is reduced with Fourier transformation to a system 
of integral singular equations with regard to the jumps of the displacements at the cracks’ branches. The singularity of the 
equations kernels is extracted. The system of singular integral equations is solved with the orthogonal polynomial method. The 
solution of the system is searched as the series by Chebyshev polynomials with the weight function. The realisation of orthogonal 
polynomial method leads to an infinite system of linear algebraic equations with regard to  the unknown coefficients of the series. 
The formulas for the stresses and displacements of an elastic finite cylinder are presented. The numerical realisation of the 
proposed method is demonstrated in cases with two and three cracks ; the stress state is investigated dependingon the cracks'  
locations and sizes. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Elastic cylinders of finite length (both solid and hollow) are often used as components of machines and in 
building construction. The influence of a crack may impair the correct function and  even to total destruction of such 
components and result in failure of the machine or construction. It is necessary to establish a corresponding 
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mathematical  model in order to represent the impact of various different parameters on the system, to state the most 
dangerous location of a crack and to estimate the most high stress inside a body. 

A lot of work is dedicated to the investigation of bodies with defects (cracks and inclusions Morozov (1984), 
Savruk et al (1989), Panasyk et al (1981), Aleksandrov et al (1993), Babeshko et al (2007), Hakobyan (2014), Lee 
(2004), Mykhas'kiv et al (2009), Chang et al (2014), Xie et al (2003), Jin-Chad et al (1996). The stress state and 
stress intensity factor of homogeneous and layered cylinders with circular cracks is investigated by many authors 
Chang (1985), Yantian et al (1988), Zhang (1988), Akiyawa et al (2001), Huang et al (2005), Kaman et al (2006). 
The idea of the solving methods is based on a problem’s reductum to a system of singular equations of Cauchy type 
or to Fredholm’s type equation, solved numerically. In Protserov and Vaysfeld (2017) the problem results in a 
system of integro-differential equations, solved by the orthogonal polynomial method. The arc crack is considered in 
Gribova et al (1989), where the problem is reduced to the Riemann problem. The torsion problems of solid, hollow 
and two layered cylinders with cylindrical (interface) cracks are solved in Wuthrich (1980), Yong et al (2013), Shi 
(2015), Pengpeng (2015). 

Less work has studied  ring-shaped cracks. The torsion problem solutions for a cylinder with external ring-shaped 
cracks are represented in Kudryavcev et al (1973), Malits (2009). In Suzuki et al (1980) the solution is constructed 
for a ring-shaped crack on the internal surface of a hollow cylinder. But there are fewer papers where authors solve 
the problems for cylinders with the internal ring-shaped cracks. At Aleksandrov et al (1993), Kanwal (1974) the 
problem with the ring-shaped crack is solved for the unbounded medium. Only in Han et al (1994) the problem with 
one  internal ring-shaped crack is considered for the case of cylinder torsion. So the problem of stress state 
estimation during the torsion of the cylinders weakened by the internal ring-shaped cracks needs further 
investigation and study.   

 
Nomenclature  
 
R external radius of cylinder 
H  height of cylinder  
G            share modulus 
u tangential displacement 
Kiii                stress intensity factor (SIF) 
          

 

1. Problem’s statement 

Let’s consider a solid  (the problem №1) and a hollow (the problem №2) elastic finite cylinders occupying areas 
in the cylindrical coordinate system  , ,r z 0 , ,0        r R z H  0 , ,0        R r R z H  
correspondently. The lower bases of the cylinders are fixed, upper bases are free from stresses. The axisymmetric 
torsion loading is applied to the lateral surface r R  of the cylinders. This loading causes the torsion of the solids. 
In the case of a hollow cylinder it is supposed that internal cylindrical surface 0r R  is free from stress. The system 
of N ring-shaped cracks is situated inside the cylinders on the segments , , 1, ,   j j jz d a r b j N the branches of 
the cracks are free from stress. The axisymmetric statement of the problems leads to the only one nonzero 
displacement  , ,u r z satisfying the torsion equation 
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The only nonzero stress are the tangential stress 
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mathematical  model in order to represent the impact of various different parameters on the system, to state the most 
dangerous location of a crack and to estimate the most high stress inside a body. 

A lot of work is dedicated to the investigation of bodies with defects (cracks and inclusions Morozov (1984), 
Savruk et al (1989), Panasyk et al (1981), Aleksandrov et al (1993), Babeshko et al (2007), Hakobyan (2014), Lee 
(2004), Mykhas'kiv et al (2009), Chang et al (2014), Xie et al (2003), Jin-Chad et al (1996). The stress state and 
stress intensity factor of homogeneous and layered cylinders with circular cracks is investigated by many authors 
Chang (1985), Yantian et al (1988), Zhang (1988), Akiyawa et al (2001), Huang et al (2005), Kaman et al (2006). 
The idea of the solving methods is based on a problem’s reductum to a system of singular equations of Cauchy type 
or to Fredholm’s type equation, solved numerically. In Protserov and Vaysfeld (2017) the problem results in a 
system of integro-differential equations, solved by the orthogonal polynomial method. The arc crack is considered in 
Gribova et al (1989), where the problem is reduced to the Riemann problem. The torsion problems of solid, hollow 
and two layered cylinders with cylindrical (interface) cracks are solved in Wuthrich (1980), Yong et al (2013), Shi 
(2015), Pengpeng (2015). 

Less work has studied  ring-shaped cracks. The torsion problem solutions for a cylinder with external ring-shaped 
cracks are represented in Kudryavcev et al (1973), Malits (2009). In Suzuki et al (1980) the solution is constructed 
for a ring-shaped crack on the internal surface of a hollow cylinder. But there are fewer papers where authors solve 
the problems for cylinders with the internal ring-shaped cracks. At Aleksandrov et al (1993), Kanwal (1974) the 
problem with the ring-shaped crack is solved for the unbounded medium. Only in Han et al (1994) the problem with 
one  internal ring-shaped crack is considered for the case of cylinder torsion. So the problem of stress state 
estimation during the torsion of the cylinders weakened by the internal ring-shaped cracks needs further 
investigation and study.   
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The boundary conditions for the solid cylinder (problem №1) are written in the form 
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The boundary conditions for the hollow cylinder (problem №2) have the same presentations but are 
supplemented with the condition on the internal cylindrical surface: 
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Displacements is discontinuous on the cracks’ surfaces 
 
       , 0 , 0 , , 0 0, , 1, ,           j j j z j j ju r d u r d r r d a r b j N  

here   j r are the unknown jumps of the displacements on the cracks’ branches,   0 j r outside the segment of  
cracks’ location. 

Let’s pass to the dimensionless coordinates 1 1,   rR zH and designate   
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One must find the solution of the equation 
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with the boundary conditions 
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Boundary conditions (2), (3) should be satisfied for the problem  №1; boundary conditions (2) – (4) should be 

satisfied for the problem  №2. The conditions on the cracks’ surfaces should also be satisfied 
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2. The construction of one-dimensional problem and its solution 

To get the one-dimensional boundary value problem one must use finite integral Fourier transformation with 
regard to variable   
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The application  of  transformation (7) to the equation(1)and boundary conditions (3), (4) (the boundary 
conditions(2) will be satisfied during it) accordingly to the generalized scheme Popov (1982) with regard to the 
conditions on the cracks (5) leads to the one dimensional boundary value problem 
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The general solution of the equation (1) for the problem №1 has the form 
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For the Problem №2 the general solution is represented  by the formula 
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                         (12) 

where      1 1,I x K x are modified Bessel functions of first order, ,k kA B   are the integration constants. The 
fundamental function Kamke (1976) of equation (8) has the form 
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it is easy to check that this function satisfies the homogeneous equation (9) , is bounded when 0,  on each of 
the segments  0;t ,  ;1 ,t  and is continuous.  

 

Its derivative   ,
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
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has the jump 1,
t

   during the passing across line .  t  It is possible to represent 

fundamental  function (12) in another form with the help of the formula (6.541, Gradshtein et al (1963))  
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  
     

r z
u u

G u G
r r z

  

The boundary conditions for the solid cylinder (problem №1) are written in the form 
 

   ,0 0, , | 0
  


  

z z H
u

u r r H G
z

 ,
 

1
 

 
   

r
u

G u
r r

 

The boundary conditions for the hollow cylinder (problem №2) have the same presentations but are 
supplemented with the condition on the internal cylindrical surface: 

 

 
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0
1, 0

 


 
    

r
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Displacements is discontinuous on the cracks’ surfaces 
 
       , 0 , 0 , , 0 0, , 1, ,           j j j z j j ju r d u r d r r d a r b j N  

here   j r are the unknown jumps of the displacements on the cracks’ branches,   0 j r outside the segment of  
cracks’ location. 

Let’s pass to the dimensionless coordinates 1 1,   rR zH and designate   
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0, , , , , , , ,                   j j j ju u R H p q H R RH R R d H   

1 1, , 1, .    j j j ja R b R j N
  

One must find the solution of the equation 
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2
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with the boundary conditions 
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
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 1

1
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
   



 

    
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u uu RG p u                                                         (4) 

  
Boundary conditions (2), (3) should be satisfied for the problem  №1; boundary conditions (2) – (4) should be 

satisfied for the problem  №2. The conditions on the cracks’ surfaces should also be satisfied 
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     , 0 , 0 , 1,         j j ju u j N                                           (5) 

0| 0, 1, 


 
 j

u j N                                                (6) 

2. The construction of one-dimensional problem and its solution 

To get the one-dimensional boundary value problem one must use finite integral Fourier transformation with 
regard to variable   

 

         
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2
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
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k

u u d u u k                                          (7) 

The application  of  transformation (7) to the equation(1)and boundary conditions (3), (4) (the boundary 
conditions(2) will be satisfied during it) accordingly to the generalized scheme Popov (1982) with regard to the 
conditions on the cracks (5) leads to the one dimensional boundary value problem 
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       11 1 , 0      k k k k ku u RG p u u                (10) 

The general solution of the equation (1) for the problem №1 has the form 
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For the Problem №2 the general solution is represented  by the formula 
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                         (12) 

where      1 1,I x K x are modified Bessel functions of first order, ,k kA B   are the integration constants. The 
fundamental function Kamke (1976) of equation (8) has the form 

  
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   

1 1

1 1

, 0 1
,

, 0 1

   
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     
  
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it is easy to check that this function satisfies the homogeneous equation (9) , is bounded when 0,  on each of 
the segments  0;t ,  ;1 ,t  and is continuous.  

 

Its derivative   ,




k t

has the jump 1,
t

   during the passing across line .  t  It is possible to represent 

fundamental  function (12) in another form with the help of the formula (6.541, Gradshtein et al (1963))  
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                              (13) 
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where  1J x   is Bessel function.  

For the problem №1 with regard to the correspondences            1 1 2 1 1 2,     xI x I x xI x xK x K x xK x  

from the boundary conditions (9) one finds 
 
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For the problem №1 from the boundary conditions (10) one finds 
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N
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where            2 2 2 2 .       k k k kk I K I K   

One should substitute the found values of the integration constants in the corresponding equalities (11) and (12) 
and use the inversion formula (7). As a result, the expressions of the displacement will be constructed  

for Problem №1 

   
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21 1 0
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2
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
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     1 1    k k jI I t t t dt                (15) 

for Problem №2    
         1 1

1 1 0
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 


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Here           2 1 2 1         k k k k kF K I I K   
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The expression (14) was used during formulas (15), (16) construction. The formula (1.445(1), Gradshtein et al 
(1963)) was used to find the series 
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4. Obtaining  the integral equation system and its solution with the orthogonal polynomials method 

The unknown functions   j  
(the jump of stress through the branches of j -d crack) are the components of the 

displacement formulas (15) and (16). To find them one must use the conditions (6) and to demand the absence of the 
stress on cracks’ branches.  

Let’s start with Problem №2.  The expression (15) should be substituted in condition (6) for a crack  
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 Gradshtein et al (1963) is used for the extraction of singular 

kernel. It leads to the system of the integral equations 
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where      
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where  1J x   is Bessel function.  

For the problem №1 with regard to the correspondences            1 1 2 1 1 2,     xI x I x xI x xK x K x xK x  

from the boundary conditions (9) one finds 
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For the problem №1 from the boundary conditions (10) one finds 
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where            2 2 2 2 .       k k k kk I K I K   

One should substitute the found values of the integration constants in the corresponding equalities (11) and (12) 
and use the inversion formula (7). As a result, the expressions of the displacement will be constructed  

for Problem №1 

   
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     1 1    k k jI I t t t dt                (15) 

for Problem №2    
         1 1

1 1 0

2 1, sin 1
2






       

 



 


     

   
j

j

N
k

k k j j
kk j

FH xu p t t dt J x J t x ch
G k

     (16) 
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Here           2 1 2 1         k k k k kF K I I K   
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            2 1 2 1 2 1 .          k k k k k kI K I K t K I t  

The expression (14) was used during formulas (15), (16) construction. The formula (1.445(1), Gradshtein et al 
(1963)) was used to find the series 
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4. Obtaining  the integral equation system and its solution with the orthogonal polynomials method 

The unknown functions   j  
(the jump of stress through the branches of j -d crack) are the components of the 

displacement formulas (15) and (16). To find them one must use the conditions (6) and to demand the absence of the 
stress on cracks’ branches.  

Let’s start with Problem №2.  The expression (15) should be substituted in condition (6) for a crack  
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2
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t

 Gradshtein et al (1963) is used for the extraction of singular 

kernel. It leads to the system of the integral equations 
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        , 1,    i i i N   

where      
0

, 
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are the regular kernels,     
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All integrals in system (17) should be integrated by parts with regard to a crack’s closeness condition 
    0,    j j j j then all equations of this system should be integrated with regard to variable .  One must 

use that    
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 where  K x  is full elliptical integral of 1-st order (obtaining this formula 

is shown at App. A). After these transformations the system (17) takes the form 
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iC  are the unknown constants. 

The transition to the new variables was done in the obtained system of integral equations 
1

1 1exp , exp , 2 ln ,    
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t  

It reduces the interval of integration  ; i i  to the interval  1;1 .  After the transition the resulting system of 
the integral equations will be following: 
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where    1 1exp exp ,
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  1 1 1 1, 4 exp exp , exp ,
2 2

          
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It is known from general theory  of full elliptical  integrals, that integral  K x  has a logarithmic singularity at  
1.x  The singular kernels of system (19) with regard of it are represented  as 

 1sech sech ln ,
2 2
     
   

  
     

i
i i

K l  

where the functions  il x  are even, continuous with their derivative and  
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lim ln8 .
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The system of integral equations for the estimation of functions    i is written finally  
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All transformations for the Problem №2 should be done in an analogical way. These transformations lead at first 

to the system(18) where in  the formulas for  
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The system of integral equations of type (20) is constructed after changing the variables.  So, both problems lead 
to the system of the integral equations of type (20). 

        The structure of equation singular kernels in system (20) and  availability of the spectral correspondence  
Popov (1982) 
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allow the  use of  the orthogonal polynomial method to solve  this system. Accordingly    to the scheme of the 
method the solution of the system is searched as the series expansion by Chebyshev polynomials of І-st order  nT x   
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are the regular kernels,     
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All integrals in system (17) should be integrated by parts with regard to a crack’s closeness condition 
    0,    j j j j then all equations of this system should be integrated with regard to variable .  One must 
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 where  K x  is full elliptical integral of 1-st order (obtaining this formula 

is shown at App. A). After these transformations the system (17) takes the form 
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
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
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





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K
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iC  are the unknown constants. 

The transition to the new variables was done in the obtained system of integral equations 
1

1 1exp , exp , 2 ln ,    
  


      

       
     

i
i i i

i i i
t  

It reduces the interval of integration  ; i i  to the interval  1;1 .  After the transition the resulting system of 
the integral equations will be following: 

           
1 1

11 1

sech sech , ,
2 2
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          
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N
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i i j
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where    1 1exp exp ,
2
     
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  1 1 1 1, 4 exp exp , exp ,
2 2

          
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It is known from general theory  of full elliptical  integrals, that integral  K x  has a logarithmic singularity at  
1.x  The singular kernels of system (19) with regard of it are represented  as 

 1sech sech ln ,
2 2
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i
i i

K l  

where the functions  il x  are even, continuous with their derivative and  
0

lim ln8 .


i ix
l x   

The system of integral equations for the estimation of functions    i is written finally  
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         1 1, 1,   i N  

All transformations for the Problem №2 should be done in an analogical way. These transformations lead at first 

to the system(18) where in  the formulas for  
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The system of integral equations of type (20) is constructed after changing the variables.  So, both problems lead 
to the system of the integral equations of type (20). 

        The structure of equation singular kernels in system (20) and  availability of the spectral correspondence  
Popov (1982) 
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nT
d T
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n

  

allow the  use of  the orthogonal polynomial method to solve  this system. Accordingly    to the scheme of the 
method the solution of the system is searched as the series expansion by Chebyshev polynomials of І-st order  nT x   
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T
i N                                (21) 
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Realisation of the standard scheme of orthogonal polynomial methods leads to a system of linear algebraic 
equations  with regard to the coefficients of the expansion (21) 

1 0
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where 
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Right hand parts of the system (22) have the unknown constants ,iC  so why one can search the solution of the 
system as the linear combinations  
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where 0i m  are the solutions of the system 0 0
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

 

     
N

i ij ij
m i m mn mn mn jn i m
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After solving  these systems and calculating  the coefficients 0i m  and  s
i m one must find the constants .iC  Such 

grounds can be used with this aim. The functions   , i t  should be found from the system of the integral 
equations(18) and should satisfy the conditions  

     1 1 | 0,
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


 
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which arise from the closeness condition of the crack     0.    i i i i  These conditions with regard to the 
executed change of  the variables are equivalent to the next ones 
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T
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Taking into consideration formula ( 2.18.1.10 , Prudnikov et al (1983)) and representation (23) one gets the 
system of linear equation to find the constants iC   
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 
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Thus, all values  constituent in  the formulas for the displacements  (15) and  (16) are found, from where  it is 
not complicated to get the stress values inside the cylinders.  

5. Finding the stress intensity factors (SIF) 

SIF values are  extremely interesting when solving the problems for solids with cracks. For the proposed problem 
such SIF values it is  important to calculate on the internal and external contours of a crack . 

   
0

lim 2 , 
 

 j

j

a
j z jIII r a

K a r r d   and    
0

lim 2 , , 1, . 
 

  j

j

b
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With regard to all the executed earlier changeof the variables, integration by parts and truncation of summands 
having the finite limits when 0 jr a  and 0 jr b , one gets 
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   For the next investigation one needs to  evaluate the limit values of the integrals  
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(25)when 1 0  x  and 1 0 x .  As it shown at Appendix B, for all  n  the integrals  0L x  are bounded and 

when 1 0  x  and when 1 0 x  too. For the integrals   1L x  the next asymptotic formulas were found  
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Realisation of the standard scheme of orthogonal polynomial methods leads to a system of linear algebraic 
equations  with regard to the coefficients of the expansion (21) 
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Right hand parts of the system (22) have the unknown constants ,iC  so why one can search the solution of the 
system as the linear combinations  
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After solving  these systems and calculating  the coefficients 0i m  and  s
i m one must find the constants .iC  Such 

grounds can be used with this aim. The functions   , i t  should be found from the system of the integral 
equations(18) and should satisfy the conditions  
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which arise from the closeness condition of the crack     0.    i i i i  These conditions with regard to the 
executed change of  the variables are equivalent to the next ones 
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T
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Taking into consideration formula ( 2.18.1.10 , Prudnikov et al (1983)) and representation (23) one gets the 
system of linear equation to find the constants iC   
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1 0 0
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2 2
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Thus, all values  constituent in  the formulas for the displacements  (15) and  (16) are found, from where  it is 
not complicated to get the stress values inside the cylinders.  

5. Finding the stress intensity factors (SIF) 

SIF values are  extremely interesting when solving the problems for solids with cracks. For the proposed problem 
such SIF values it is  important to calculate on the internal and external contours of a crack . 
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With regard to all the executed earlier changeof the variables, integration by parts and truncation of summands 
having the finite limits when 0 jr a  and 0 jr b , one gets 
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   For the next investigation one needs to  evaluate the limit values of the integrals  
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(25)when 1 0  x  and 1 0 x .  As it shown at Appendix B, for all  n  the integrals  0L x  are bounded and 

when 1 0  x  and when 1 0 x  too. For the integrals   1L x  the next asymptotic formulas were found  
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  when 1 0 x  .                           (26) 

   With the help of the obtained asymptotic formulas for the integrals  0L x  and  1L x behaviours , one can 
calculate the limits in the expressions  (24) and write the formulas for the SIF calculation  
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                              (27) 

6. Discussion of the numerical results 

The SIF calculations were conducted for a solid and a hollow cylinder with the ratio of  radius and height  
: 1: 4.  R H  The ratio of internal radius to the external one for the hollow cylinder is 0 : 1: 5.  R R  For both 

problems the load was taken as the uniformly distributed torsion load, applied at the upper part of a lateral surface 

  , ,
0. 0

   
 

P cH z Hq z
z cH

where 1 cos ,  k k kp P c  0.8c and 1. P  

The results of the SIF calculation for the hollow cylinder  0 1  for the case of one crack are shown at Table 

1 on dependence on crack’s size  1 1;   and height of its location 1 . 

Table 1. SIF values for the hollow cylinder  0 1 
 
for the case of one crack. 

 1 0.25    1 0.5    1 0.75    

 1 1;    1a
IIIK   1b

IIIK   1a
IIIK   1 1;    1a

IIIK   1b
IIIK   

 0.4;0.6   0.8405 0.9383 0.8401  0.4;0.6   0.8405 0.9383 

 0.3;0.7   1.0876 1.4176 1.0871  0.3;0.7   1.0876 1.4176 

 0.2;0.8   1.1784 1.9529 1.1779  0.2;0.8   1.1784 1.9529 

 0.1;0.9
  

1.1616 2.8761 1.1612  0.1;0.9
  

1.1616 2.8761 

 
 
The results demonstrate that the SIF value  depends more  significantly on the size of the crack than on  its 

height.  For the taken load 1 1b a
III IIIK K  and hence, the increasing of load value will lead to the crack’s development 

at the points of its external contour. 
The results of the SIF calculation for the solid cylinder  0 1  for the case of two cracks are shown in Table 

2 on the dependence of the cracks’ sizes  ; i i  and heights of its location  1, 2 i i .  
From these data one concludes  that existence of a second crack decreases SIF values  of  the first crack. At the 

same time this effect is greater the closer the second crack. 
It was interesting to investigate the case when both cracks are situated in one plane SIF values are shown for this 

case in Table 3.  ( the change of  the kernels of the system of the integral equation (20) corresponding to this case 
are presented in Application C).  
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    Table 2. SIF values for the solid cylinder  0 1  for the case of two cracks. 

 1 1;    

 2 2;    1 20.25; 0.5     1 20.5; 0.75     1 20.25; 0.75     

 ia
IIIK   ib

IIIK   ia
IIIK  ib

IIIK  ia
IIIK   ib

IIIK   

 0.3;0.7   

 0.3;0.7  

1.0831 

1.0826 

1.4156 

1.4153 

1.0829 

1.0080 

 0.3;0.7   

 0.3;0.7  

1.0831 

1.0826 

1.4156 

1.4153 

 0.3;0.7  

 0.4;0.6  

1.0863 

0.8369 

1.4170 

0.9358 

1.0859 

0.7805 

 0.3;0.7  

 0.4;0.6  

1.0863 

0.8369 

1.4170 

0.9358 

 0.4;0.6  

 0.3;0.7  

0.8373 

1.0859 

0.9361 

1.4168 

0.8371 

1.0112 

 0.4;0.6  

 0.3;0.7  

0.8373 

1.0859 

0.9361 

1.4168 

 

      Table 3. SIF values for the solid cylinder  0 1  for the case of two cracks situated on one plane. 

 
 

1 1

2 2

;
;

 
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1 1

2 2

a b
III III
a b
III III

K K

K K
  

 
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1 1

2 2

;
;

 

 
 

1 1

2 2

a b
III III
a b
III III

K K

K K
 

 
 
0.2;0.3
0.5;0.6

  
0.3033    0.3406 

0.6829    0.7144 

 
 
0.1;0.5
0.6;0.7

 
0.4936    0.9112 

0.8851    0.8891 

 
 
0.2;0.3
0.5;0.8

 
0.3666    0.4195 

1.3982    1.6037 

 
 
0.1;0.5
0.6;0.8

 
0.5367    1.0336 

1.3421    1.3939 

 
 
0.2;0.3
0.5;0.9

 
0.4347    0.5026 

1.8905    2.3537 

 
 
0.1;0.5
0.6;0.9

 
0.6178    1.2401 

1.8738    2.0847 

 

As can be  seen from the presented results, the SIF value on the external crack is always significantly greater than 
on the internal crack.  

The results of SIF calculation for the hollow cylinder  0.2 1  for the case of one crack are shown at Table 4 

depending on crack’s size  1 1;   and the height of its location 1 . 

       Table 4. SIF values for the hollow cylinder for the case of one crack. 

 1 0.25    1 0.5    1 0.75    

 1 1;    1a
IIIK   1b

IIIK   1a
IIIK   1 1;    1a

IIIK   1b
IIIK   

 0.4;0.8   1.4337 1.7824 1.4333  0.4;0.8   1.4337 1.7824 

 0.3;0.9   1.8066 2.7711 1.8061  0.3;0.9   1.8066 2.7711 

 
In comparison with a solid cylinder the value of SIF are greater on the internal contour of the crack,   although 

they are still less than on the external contour of the crack. The absolute values of SIF on the external contour are 
greater too.  
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  when 1 0 x  .                           (26) 

   With the help of the obtained asymptotic formulas for the integrals  0L x  and  1L x behaviours , one can 
calculate the limits in the expressions  (24) and write the formulas for the SIF calculation  
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6. Discussion of the numerical results 

The SIF calculations were conducted for a solid and a hollow cylinder with the ratio of  radius and height  
: 1: 4.  R H  The ratio of internal radius to the external one for the hollow cylinder is 0 : 1: 5.  R R  For both 

problems the load was taken as the uniformly distributed torsion load, applied at the upper part of a lateral surface 
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P cH z Hq z
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where 1 cos ,  k k kp P c  0.8c and 1. P  

The results of the SIF calculation for the hollow cylinder  0 1  for the case of one crack are shown at Table 

1 on dependence on crack’s size  1 1;   and height of its location 1 . 

Table 1. SIF values for the hollow cylinder  0 1 
 
for the case of one crack. 

 1 0.25    1 0.5    1 0.75    

 1 1;    1a
IIIK   1b

IIIK   1a
IIIK   1 1;    1a

IIIK   1b
IIIK   

 0.4;0.6   0.8405 0.9383 0.8401  0.4;0.6   0.8405 0.9383 

 0.3;0.7   1.0876 1.4176 1.0871  0.3;0.7   1.0876 1.4176 

 0.2;0.8   1.1784 1.9529 1.1779  0.2;0.8   1.1784 1.9529 

 0.1;0.9
  

1.1616 2.8761 1.1612  0.1;0.9
  

1.1616 2.8761 

 
 
The results demonstrate that the SIF value  depends more  significantly on the size of the crack than on  its 

height.  For the taken load 1 1b a
III IIIK K  and hence, the increasing of load value will lead to the crack’s development 

at the points of its external contour. 
The results of the SIF calculation for the solid cylinder  0 1  for the case of two cracks are shown in Table 

2 on the dependence of the cracks’ sizes  ; i i  and heights of its location  1, 2 i i .  
From these data one concludes  that existence of a second crack decreases SIF values  of  the first crack. At the 

same time this effect is greater the closer the second crack. 
It was interesting to investigate the case when both cracks are situated in one plane SIF values are shown for this 

case in Table 3.  ( the change of  the kernels of the system of the integral equation (20) corresponding to this case 
are presented in Application C).  
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    Table 2. SIF values for the solid cylinder  0 1  for the case of two cracks. 
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0.5;0.6

  
0.3033    0.3406 

0.6829    0.7144 

 
 
0.1;0.5
0.6;0.7

 
0.4936    0.9112 

0.8851    0.8891 

 
 
0.2;0.3
0.5;0.8

 
0.3666    0.4195 

1.3982    1.6037 

 
 
0.1;0.5
0.6;0.8

 
0.5367    1.0336 

1.3421    1.3939 

 
 
0.2;0.3
0.5;0.9

 
0.4347    0.5026 

1.8905    2.3537 

 
 
0.1;0.5
0.6;0.9

 
0.6178    1.2401 

1.8738    2.0847 

 

As can be  seen from the presented results, the SIF value on the external crack is always significantly greater than 
on the internal crack.  

The results of SIF calculation for the hollow cylinder  0.2 1  for the case of one crack are shown at Table 4 

depending on crack’s size  1 1;   and the height of its location 1 . 

       Table 4. SIF values for the hollow cylinder for the case of one crack. 

 1 0.25    1 0.5    1 0.75    

 1 1;    1a
IIIK   1b

IIIK   1a
IIIK   1 1;    1a

IIIK   1b
IIIK   

 0.4;0.8   1.4337 1.7824 1.4333  0.4;0.8   1.4337 1.7824 

 0.3;0.9   1.8066 2.7711 1.8061  0.3;0.9   1.8066 2.7711 

 
In comparison with a solid cylinder the value of SIF are greater on the internal contour of the crack,   although 

they are still less than on the external contour of the crack. The absolute values of SIF on the external contour are 
greater too.  
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The results of SIF calculation for the hollow cylinder  0.2 1  for the case of two cracks are shown in Table 

5 depending  on the cracks’ sizes  ; i i   and heights of its location  1, 2 i i . 

   Table 5. SIF values for the hollow cylinder for the case of two cracks. 

 1 1;    

 2 2;    1 20.25; 0.5     1 20.5; 0.75     1 20.25; 0.75     

 ia
IIIK   ib

IIIK   ia
IIIK  ib

IIIK  ia
IIIK   ib

IIIK   

 0.4;0.8   

 0.4;0.8  

1.4299 

1.4295 

1.7815 

1.7814 

1.4297 

1.3528 

 0.4;0.8   

 0.4;0.8  

1.4299 

1.4295 

1.7815 

1.7814 

 0.4;0.8  

 0.3;0.9  

1.4268 

1.8015 

1.7808 

2.7709 

1.4267 

1.7137 

 0.4;0.8  

 0.3;0.9  

1.4268 

1.8015 

1.7808 

2.7709 

 0.3;0.9  

 0.4;0.8  

1.8020 

1.4264 

2.7709 

1.7808 

1.8017 

1.3497 

 0.3;0.9  

 0.4;0.8  

1.8020 

1.4264 

2.7709 

1.7808 

 
The exact same trend remains here as it was for the case of the solid cylinder: the existence of a second crack 

decreases the SIF value of  the first crack. Furthermore, as for the case of one crack, SIF values on the internal 
contour of crack  significantly increased in comparison with a solid cylinder.  

Conclusions 

1. The proposed method allows solution of the torsion problem for the finite elastic multilayered cylinder with  ring 
shaped cracks. 

2. The formulas for  SIF value calculations are constructed. SIF are investigated depending  on  the elastic properties 
of the layers and cracks' location. 

3. The proposed method can be used in the case of dynamical torsion load. 
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Appendix A. The singularity of the equation's kernel 

Corresponding to the formula ( 6.576.2 , Gradshtein et al (1963)) one writes  

      
 

0
00 0 0 2

0

1 1 1 4, , ;1; .
2 2

 
 

  
  
   


tW t J x J tx dx F

t t
  

Taking into consideration the expression of the full elliptical integral of 1-st order  K x with the Gauss 

hypergeometric function ( 8.113, Gradshtein et al (1963) ) one gets finally    
0

00
22, .




  
 

     

t
W t K

t t
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This expression is symmetrical with respect to the    and ,t  so this formula is true as ,  t  and as t  too. 

Appendix B. The limit values of the integrals (25) 

Let’s find the limit values of the integrals (25) when 1 0  x  and 1 0 x . It simpler to provide all 
reasoning for the integrals of a  more common structure with Jacobi polynomials   , . 

nP x  Let’s use the equality 
that leads from the formulas ( 10.8.19 and 10.8.20,  Beitman et al (1974)) 
           

1
, ,

1

1 1 1 1
sin

   
   




   
  

 n n
t t x x

P t dt P x
x t

                                     (28) 

       
 

1 12 1, ;1 ; ,
1 2

   
  

 
                 

n xF n n
n

  where 1, 1     ,  1;1 x   

and  , ; ;F a b c x  Gauss hypergeometric function.  
Let’s integrate this integral by parts 

           

     

1
, ,
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1

1ln

1ln 1 1 1 1
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  

 n n

n

dtu du
x t x t

t t P t dt dv t t P t dt
x t

v t t P t
n

 

           
1

1 1 1 11, 1 1 1, 1
11 1

1

1 1 1 1ln 1 1 | 1 1
2 2

            
 



        
 n nt t P t t t P t dt

x t n n x t
 

   
       

 

1 1
1, 1 1

1
1 1 1 1 12 , 1; ; .

2 sin 1 2 2

 
     

  
   

 
   


                      n
x x n xP x F n n

n n n
 

It is seen from the result that the initial integral has final limits when 1 0 x  and 1 0 x .  

Taking into account that      
1 1,2 2! ,

1
2

  

 

n n
nT x P x

n
а    

   
1 1,
2 21 !

32 2

 


 
n n

n
U x P x

n
  

 one gets 

   2
0 1

1 11 , ; ; .
2 2

 


      
 

n
xL x x U x F n n

n n
 

This implies that    0 1
  nL x

n
 when 1 0  x  and  0


L x

n
 when 1 0. x   

Let’s consider the integral  

           
1 1

, ,

1 1

1 11ln 1 1


     

 

 
   

  n n
t td t t P t dt P x dx

dx x t t x

         
 

,1 1 1 12 1, ;1 ; .
sin 1 2

 
     

   
  

                   
n

x x n xP x F n n
n

 

Taking into consideration equality (28), one should pass here from Jacobi’s polynomials to the  Chebyshov’s 
polynomials. It gives 

   
1 2

3 12 1,1 ; ; .
2 21

        
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nT x xL x nF n n
x
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The results of SIF calculation for the hollow cylinder  0.2 1  for the case of two cracks are shown in Table 

5 depending  on the cracks’ sizes  ; i i   and heights of its location  1, 2 i i . 

   Table 5. SIF values for the hollow cylinder for the case of two cracks. 

 1 1;    

 2 2;    1 20.25; 0.5     1 20.5; 0.75     1 20.25; 0.75     

 ia
IIIK   ib

IIIK   ia
IIIK  ib

IIIK  ia
IIIK   ib

IIIK   

 0.4;0.8   

 0.4;0.8  

1.4299 

1.4295 

1.7815 

1.7814 

1.4297 

1.3528 

 0.4;0.8   

 0.4;0.8  

1.4299 

1.4295 

1.7815 

1.7814 

 0.4;0.8  

 0.3;0.9  

1.4268 

1.8015 

1.7808 

2.7709 

1.4267 

1.7137 

 0.4;0.8  

 0.3;0.9  

1.4268 

1.8015 

1.7808 

2.7709 

 0.3;0.9  

 0.4;0.8  

1.8020 

1.4264 

2.7709 

1.7808 

1.8017 

1.3497 

 0.3;0.9  

 0.4;0.8  

1.8020 

1.4264 

2.7709 

1.7808 

 
The exact same trend remains here as it was for the case of the solid cylinder: the existence of a second crack 

decreases the SIF value of  the first crack. Furthermore, as for the case of one crack, SIF values on the internal 
contour of crack  significantly increased in comparison with a solid cylinder.  

Conclusions 

1. The proposed method allows solution of the torsion problem for the finite elastic multilayered cylinder with  ring 
shaped cracks. 

2. The formulas for  SIF value calculations are constructed. SIF are investigated depending  on  the elastic properties 
of the layers and cracks' location. 

3. The proposed method can be used in the case of dynamical torsion load. 
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Appendix A. The singularity of the equation's kernel 

Corresponding to the formula ( 6.576.2 , Gradshtein et al (1963)) one writes  

      
 

0
00 0 0 2

0

1 1 1 4, , ;1; .
2 2

 
 

  
  
   


tW t J x J tx dx F

t t
  

Taking into consideration the expression of the full elliptical integral of 1-st order  K x with the Gauss 

hypergeometric function ( 8.113, Gradshtein et al (1963) ) one gets finally    
0

00
22, .




  
 

     

t
W t K

t t
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This expression is symmetrical with respect to the    and ,t  so this formula is true as ,  t  and as t  too. 

Appendix B. The limit values of the integrals (25) 

Let’s find the limit values of the integrals (25) when 1 0  x  and 1 0 x . It simpler to provide all 
reasoning for the integrals of a  more common structure with Jacobi polynomials   , . 

nP x  Let’s use the equality 
that leads from the formulas ( 10.8.19 and 10.8.20,  Beitman et al (1974)) 
           

1
, ,

1

1 1 1 1
sin

   
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


   
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 n n
t t x x

P t dt P x
x t

                                     (28) 
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                 

n xF n n
n

  where 1, 1     ,  1;1 x   

and  , ; ;F a b c x  Gauss hypergeometric function.  
Let’s integrate this integral by parts 
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It is seen from the result that the initial integral has final limits when 1 0 x  and 1 0 x .  

Taking into account that      
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This implies that    0 1
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n
 when 1 0  x  and  0


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Let’s consider the integral  
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Taking into consideration equality (28), one should pass here from Jacobi’s polynomials to the  Chebyshov’s 
polynomials. It gives 
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This implies that      
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   Let’s consider the special case when 0.n   One can use the approach proposed by G. Ya. Popov in Popov (1968). 
One considers the integral 
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ig z on the upper branch of cut, and value    exp
2
  

 

ig z on the lower branch. On the base of Cauchy  

formula one can write    1
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


C

g
g z d

i z
, where C is arbitrary closed contour, covering segment  1;1 , 

point z is situated outside contour C . We contract the contour to the segment
  1;1 . As a result one gets  
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               (29) 

Let’s integrate the equality (29) along some curve connecting point 1z  with arbitrary point z :  
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The variable change 1
1








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u

 where 1
1





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z

 is done at the left hand part of the equality  
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with regard to the integral expression (9.111, Gradshtein et al (1963)) for Gauss hypergeometric function.  

Let’s consider the right hand part of the equality (30). With the known expression  
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In the first integral on the right hand side the change of variable is provided 1 2   t : 
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and it leads from the obtained equality that for 0n   
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L x   when 1 0 x . It can be seen there is no singularity here.  

After the differentiation of (31)  one gets 
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Hence finally for 0n      
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  L x x ,  if 1 0 x .  

Let’s consider the case when 1 0  x . The equality (29)  should be integrated along some curve 
connecting point 1 z  with arbitrary point z    
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Integral in left hand part with the change of  variable 1
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, where 1
1





zu
z

, is calculated by the 

analogous  way    
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With the fact that    
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ln 1 ln 
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, the integral in right hand part takes the form  
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Let’s change variable 2 1  t of the  first integral in the right hand part. Then 
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This implies that      
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   Let’s consider the special case when 0.n   One can use the approach proposed by G. Ya. Popov in Popov (1968). 
One considers the integral 
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and function      
1 1
2 21 1   g z z z , given on the complex variable  z along the cut segment  1;1  . It has value 
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ig z on the upper branch of cut, and value    exp
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ig z on the lower branch. On the base of Cauchy  

formula one can write    1
2




 
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


C

g
g z d

i z
, where C is arbitrary closed contour, covering segment  1;1 , 

point z is situated outside contour C . We contract the contour to the segment
  1;1 . As a result one gets  
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               (29) 

Let’s integrate the equality (29) along some curve connecting point 1z  with arbitrary point z :  
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The variable change 1
1





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 where 1
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with regard to the integral expression (9.111, Gradshtein et al (1963)) for Gauss hypergeometric function.  

Let’s consider the right hand part of the equality (30). With the known expression  

   
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ln 1 ln , 

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one gets 
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In the first integral on the right hand side the change of variable is provided 1 2   t : 
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where   x  Euler Phi function. Thus, it is found 
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Let’s take here 1 z x . Then   
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             (31) 

and it leads from the obtained equality that for 0n   
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           
L x   when 1 0 x . It can be seen there is no singularity here.  

After the differentiation of (31)  one gets 

     2 2
1

1 1 3 1 2 1 3 5 12 1 1, ; ; 1 2, ; ; .
1 2 2 1 3 1 2 2 1

                        

x x x xL x x F x F
x x x x

  

Hence finally for 0n      
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  L x x ,  if 1 0 x .  

Let’s consider the case when 1 0  x . The equality (29)  should be integrated along some curve 
connecting point 1 z  with arbitrary point z    
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Integral in left hand part with the change of  variable 1
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
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, where 1
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analogous  way    
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With the fact that    
1

ln 1 ln 



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, the integral in right hand part takes the form  
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Let’s change variable 2 1  t of the  first integral in the right hand part. Then 
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When 1  z x  

   
1

2
1

1 1 3 1 1ln 2 1, ; ; ln 2 1
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

dt x xt x F
x xt

.                                      (32) 

It leads from this constructed equality that for 0n    
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           
L x   when 1 0  x , there is no singularity here too.  

After the differentiation of constructed equality (32) 
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Hence, for 0n     
1
21

2 1
2

   L x x ,  when 1 0  x .  

Finally we show that for all n  integrals  0L x  are bounded when 1 0 x , and when 1 0  x . The 

asymptotic formula (26) is constructed for integrals  1L x  

Appendix C.  

Suppose for definiteness that two cracks r -d and l -d are located in one plane .   r l  Тhen in the system of 
the integral equations (17) only formulas for the kernel’s are changed 

          2
1 1

0

, , 1 2 sec .   
  


 

    
 rl lr

x x xS t S t J x J t x sh sh x h dx  

The corresponding  kernels of system (18)  will be changed 

         0 0
0

, , 1 2 sec .   
  


   

    
 rl lr

x x xS t S t J x J t x sh sh h dx  

After extraction of the weakly convergent part one gets 

           0 0
00 00, , , , , , , .           rr rr ll llS t W t S t S t W t S t  

Summands  0
00 ,W t  haven’t singularities, because variables   and t  are changed here on the nonintersecting 

intervals  ; r r  and  ; l l . For their calculation one can use formula (1.12.31.1, Prudnikov et al (1983)) 
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 

1

0
00

1

, 0
2,

, 0

 



 







        
      

t K t
t

W t
tK t

 

In accordance with the above the kernels  , rlM  and  , lrM  of integral equations system (20) and 

coefficients rl
mnB  and lr

mnB  of linear algebraic equations infinite system (22) will be changed too.  
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It leads from this constructed equality that for 0n    
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After the differentiation of constructed equality (32) 
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Finally we show that for all n  integrals  0L x  are bounded when 1 0 x , and when 1 0  x . The 

asymptotic formula (26) is constructed for integrals  1L x  

Appendix C.  

Suppose for definiteness that two cracks r -d and l -d are located in one plane .   r l  Тhen in the system of 
the integral equations (17) only formulas for the kernel’s are changed 
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After extraction of the weakly convergent part one gets 
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Summands  0
00 ,W t  haven’t singularities, because variables   and t  are changed here on the nonintersecting 

intervals  ; r r  and  ; l l . For their calculation one can use formula (1.12.31.1, Prudnikov et al (1983)) 
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In accordance with the above the kernels  , rlM  and  , lrM  of integral equations system (20) and 

coefficients rl
mnB  and lr

mnB  of linear algebraic equations infinite system (22) will be changed too.  
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