MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE ODESSA I.I. Mechnikov NATIONAL UNIVERSITY

Chair mechanics, automation and information technologies

Visualization of mechanical processes

(name of academic discipline)

Level of higher education: <u>Second (master's)</u>

Field of knowledge: 12 "Information technologies"

Specialty: 126 "Information systems and technologies"

Specialization:_

Educational and professional program: "INFORMATION SYSTEMS AND TECHNOLOGIES"

ONU 2022 Work program of the educational discipline "Visualization of mechanical processes". – Odesa: ONU, 2022. – 14 p.

Developer:

Viktor Eduardovych Volkov, Sc.D. (tech.), professor.

The work program was approved at the meeting of the department *mechanics, automation and information technologies*

Protocol No. / of " <u> </u>	OP	202 <u>L</u>
Head of the department	(signature)	(<u>Alla RACHINSKA</u>)

Agreed with the EPP guarantor

"INFORMATION SYSTEMS AND TECH	NOLOGIES"
4/100	(Eugene MALAKHOV)
(Signature)	

Approved by the educational and methodological commission (EMC) for IT

specialties of the FMPhIT

Protocol No. 1 o	f" <u>31" 08</u>	2022
Head of EMC	Jay'	(Alla Rachynska)
	(signature)	

Reviewed and approved at the department meeting *mechanics, automation and information technologies*

Protocol No. 1 of "?	' <u>08</u> 2023	die ver
Head of the department	Jerry (signature)	(<u>Alla RACHINSKA</u>)
Reviewed and approved at a mechanics, automation and	the department meeting <i>information technologies</i>	
Protocol No of "		-
Head of the Department	(signature)	(Alla RACHINSKA)

1. Course description

Name of Field of knowledge, specialty,		Characteristics of the academic discipline		
indicators	specialization, level of higher education	Full-time education	External form of education	
The total number of:	Branch of knowledge <u>12 "Information technologies"</u> (code and name)	Mandatory (OP component	
credits - 4	(code and name)	Year of p	reparation:	
	Specialty	2nd _	2nd _	
hours - 120	126 "Information systems and	Semester		
content	technologies" (code and name)	3rd _	3rd _	
modules - 2	(code and name)	Lectures		
	Specializations:	12 hours	12 hours	
	(name)	Practical, seminar		
	Level of higher education:	Labo	oratory	
	<u>Second (master's)</u>	12 - hours	12 - hours	
		Indepen	dent work	
		96 hours	96 hours	
		Final co ex	ntrol form: <i>cam</i>	

2. The purpose and tasks of the educational course

Aim

The aim is to provide theoretical knowledge of mechanics and practical skills in the application of methods and means of visualizing mechanical processes using modern computer technology and object-oriented programming languages for solving current problems of information technology and automatic control.

The purpose of the lectures is to master the laws of mechanics and general methods of solving mechanics problems, as well as the rules of developing applied mathematical and software for visualization of various mechanical processes.

The purpose of conducting laboratory work is mastering and in-depth assimilation of techniques for using modern programming languages in the development of calculation algorithms for solving mechanics problems and visualization of correspondent mechanical processes.

Task:

The task of the discipline for students is to acquire theoretical knowledge and practical skills in the development of application software for visualization of mechanical processes.

The process of studying the discipline is aimed at forming elements of the following **competencies**:

a) general (GC):

GC01. Ability for abstract thinking, analysis, and synthesis.

GC05. Proficiency in assessing and ensuring the quality of work performed.

GCM01. Knowledge of rules for formulating research tasks approaches to goal selection, problem analysis, and methods for problem-solving, rules for presenting results, conducting discussions, and publishing scientific materials.

b) special/professional:

SC04. The ability to develop mathematical, informational, and computer models of objects and processes related to informatization.

SKM03. The ability to mathematically model digital data and apply efficient algorithms for the analysis and transformation of multimedia data in modern information systems.

Program learning outcomes (LO):

LO01. Locate necessary information in scientific and technical literature, databases, and other sources, analyze, and evaluate this information.

LO08. Develop models of information processes and systems of various classes, use methods of modeling, formalization, algorithmization and implementation of models using modern computer tools. Develop models of information processes

and systems of different classes, using methods of modeling, formalization, algorithmization, and model implementation using modern computer tools.

As a result of studying the academic discipline, the student should

know:

- the main problems solved by mechanics;
- the main stages of solving a modern physico-mathematical problem using examples of solving mechanics problems;
- mathematical statements of the main problems of mechanics and their components;
- basic models, methods, algorithms and their software implementation when solving a specific or general problem of mechanics;
- the main elements of modern programming used in the visualization of mechanical processes;
- numerical methods of solving mathematical problems;
- numerical methods of solving systems of nonlinear equations;
- methods of creating computer interfaces for research programs;
- methods of composition of various software modules within the framework of a single application.

be able:

- develop physical and mathematical models of mechanical processes and physical objects;
- to solve problems of mechanics and physics analytically or using numerical methods;
- develop information models of objects;
- apply modern programming languages and software component development environments to solving specific or general physical and mathematical problems;
- develop and apply modern methods of visualization of mechanical processes;
- use software components and forms for designing software implementations, use media for storing calculation results;
- prepare reports on completed tasks, describe software components, etc.;
- perform calculations according to developed programs.

3. Course content

Content of the module 1. " General mechanical problems and their solutions"

Topic 1. "Introduction. Mechanical processes and their modeling"

Mechanical movement and mechanical process. Mechanics as the basis of physics. Basic mechanical models. Problems of kinematics, statics and dynamics.

The main stages of solving physical and mathematical problems. Models, methods, algorithms, and software implementation.

Visualization of mechanical and physical processes.

The method of calculating some higher transcendental functions.

Topic 2. "Computer modeling of the movement of a material point in a uniform gravity field"

The general statement of the problem of the movement of a material point in a uniform gravitational field. Analysis of the statement and solution of the problem.

Modeling and visualization of the movement of a material point in a uniform gravity field in the presence of wind force.

Modeling the movement of an elastic ball taking into account its impact on the ground.

Topic 3. "Computer modeling of the movement of a discrete system of material points"

General formulation of the problem of movement of a discrete system of material points. Analysis of the statement of the problem.

Modeling and visualization of the movement of ideal gas molecules as a discrete system of material points.

Content of the module 2. " Visualization of mechanical oscillations"

Topic 4. "General concepts of the theory of oscillations"

General formulation and solution of the problem of free oscillations of a material point. Terminology, basic definitions. Fluctuations in technical systems.

The influence of resistance and constant forces on the free oscillations of a material point.

Visualization of the process of free oscillations of a material point.

Topic 5. "Computer modeling of forced oscillations of a material point"

Forced oscillations of the point. Resonance.

The effect of resistance on forced oscillations of a point. Resonance in the presence of resistance.

Visualization of the process of forced oscillations of a material point.

Topic 6. "Waves as a process of propagation of oscillations"

Formulation of the problem of string oscillations. Analytical solution of the problem by the Dalembert method.

Visualization of the string oscillation process.

4. Course structure

Names of topics	Number of hours									
	Full-time			Correspondence form			n			
	That's	That's including			That's	including				
	all	1	p/s	lab	W	<i>a</i> 11	1	p/s	lab	W
			I		ed			T		ed
1	2	3	4	5	6	7	8	9	10	11
Content module 1. '	' General	mec	hanic	al pro	oblen	ns and th	neir s	olutio	ons"	
Topic 1. "Introduction.										
Mechanical processes and	20	2		2	16	20	2		2	16
their modeling"										
Topic 2. "Computer modeling of the movement										
of a material point in a	20	2		2	16	20	2		2	16
uniform gravity field"										
Topic 3. "Computer										
modeling of the movement	20	2		2	10	20	2		2	10
of a discrete system of	20			2	10	20			2	10
material points"										
Together according to the	60	6		6	48	60	6		6	48
content of the module 1									_	
Content module 2. "Visualization of mechanical oscillations"										
		1	1		1		1	1		1
Topic 4. "General concepts	20	2		2	16	20	2		2	16
of the theory of oscillations"	20			2	10	20			2	10
Topic 5. "Computer										
modeling of forced	20				10	20			2	1.0
vibrations of a material	20	2		2	16	20	2		2	16
point"										
Topic 6. "Waves as a		_		_					_	
process of propagation of	20	2		2	16	20	2		2	16
Together according to the										
content of the module 2	60	6		6	48	60	6		6	48
	120	12		12	05	120	12		12	06
All hours together	120	14		14	73	120	14		14	70

5. Topics of seminar classes

Seminar classes are not provided.

6. Topics of laboratory classes

No			Number hours	
s/p	Topic name	ocular	extram ural	
1	Visualization of the movement of a material point in the field of gravity.	2	2	
2	Computer modeling and visualization of the movement of an elastic ball taking into account its impact on the ground.	2	2	
3	Visualization of the movement of ideal gas molecules.	2	2	
4	Computer modeling and visualization of free oscillations of a material point.	2	2	
5	Computer modeling and visualization of forced oscillations of a material point.	2	2	
6	Computer modeling and visualization of string oscillations.	2	2	
	Together	12	12	

7. Topics of practical classes

Practical classes are not provided.

8. Independent work

No	Topic name		Number hours	
s/p			extram	
1	Topic 1. "Introduction. Mechanical processes and their modeling" Study of point kinematics. Development of software components intended for visualization of point movement.	16	16	
2	Topic 2. "Computer modeling of the movement of a material point in a uniform gravity field" Study and visualization of the movement of artificial satellites and planets.	16	16	
3	Topic 3. "Computer modeling of the movement of a discrete system of material points" Studying the peculiarities of the movement of gas molecules as material points.	16	16	
4	Topic 4. "General concepts of the theory of oscillations" Study of fluctuations in nature and technical systems.	16	16	
5	Topic 5. "Computer modeling of forced oscillations of a material point" Study and visualization of resonance phenomena.	16	16	
6	Topic 6. "Waves as a process of propagation of oscillations" Study of general concepts of wave theory. Development of software components intended for visualization of wave motion.	16	16	
	Together	96	96	

9. Teaching methods

Verbal : lecture, consultation.

Visual : illustration of the material in the form of multimedia presentations.

Practical : solving calculation problems; laboratory classes; performance of individual control tasks.

10. Forms of control and evaluation methods

Methods of current \ *periodic control* : evaluation of the performance of laboratory work and individual control tasks.

Final control : Exam. Interview based on the theoretical material of all meaningful modules; problem solving.

Theoretical training	Practical training					
perfectly						
The learner is able to explain the essence of theoretical questions, characterize cause-and-effect relationships, form conclusions and generalizations, freely operate with axiomatics, postulates and their consequences. Able to independently analyze problems, offers alternative approaches to problem solving, or finds additional sources with other methods or software implementations.	The learner is able to independently perform software modeling of mathematical problems and implement them in the form of applications and components. Shows a creative approach to the implementation of the proposed algorithms or offers his own rational ways of performing the assigned tasks. Performs error-free calculations, calculations, and prepares relevant reports. Completed all planned tasks.					
fi	ne					
The learner is able to correctly use theoretical material or formulas, understanding their cause-and-effect relationships, and relying on the conclusions and explanations provided in the corresponding methodological support. The learner is able to independently reproduce the proposed methods and algorithms for solving typical tasks and their software implementations.	The learner is able to perform software modeling of mathematical problems without error and implement them in the form of applications and components if there is appropriate methodological support. Shows a thorough approach to the implementation of the proposed algorithms and calculations. Independently corrects errors in calculations or in software components. Completed more than half of all planned tasks.					
satisfa	octorily					

Evaluation criteria

The learner possesses educational material at the reproductive level or reproduces a certain part of it with elements of logical connections. Knows the basic concepts of the educational material, but cannot give a clear interpretation of their content and does not identify cause-and-effect relationships between them, has complications when formulating conclusions and justifications. Cannot qualify the theoretical material according to its purpose.	The learner makes mistakes when performing software modeling and when implementing it in the form of applications and components in the presence of appropriate methodological support. Shows carelessness in the implementation of proposed algorithms and calculations. Not capable of independently correcting errors in calculations or in software components. Completed less than half of planned tasks.
unsatis	factorily
The learner possesses the educational material only superficially and fragmentarily (without argumentation and justification); unsystematically singles out random features of the subject; does not know how to perform the simplest operations with the objects being studied. When answering current questions, makes significant mistakes of a principled nature.	The learner makes systematic errors when performing software modeling and when implementing it in the form of applications and components in the presence of appropriate methodological support. Unable to understand errors in calculations or in software components pointed out by the teacher. Completed less than a third of all planned tasks.

11. Questions for final control

Content module 1. "General mechanical problems and their solutions"

- 1. Basic concepts of point kinematics.
- 2. Motion of a point in a uniform gravitational field.
- 3. The concept of space velocities. Motion of artificial satellites and planets.
- 4. Basic issues of kinematics and dynamics of a discrete system of material points.
- 5. Fundamentals of the molecular kinetic theory of gases. An ideal gas.

Content module 2. "Visualization of mechanical vibrations"

- 1. The concept of fluctuations. Fluctuations in nature and technology.
- 2. Free oscillations of a material point.
- 3. Forced oscillations of the material point. The phenomenon of resonance.
- 4. Basic concepts of wave theory.
- 5. Formulation of the problem of string oscillations.
- 6. Methods of solving the string oscillation problem.

Current and periodic control							To tol	
Content module 1 Content module 2 In		Content module 2			Individual	Final control	tai	
T 1	T2	Т3	T4	Т5	T6	independent task	(exam)	po int s
10	10	10	10	10	10	-	40	100

12. Distribution of points received by students

Evaluation scale: national and ECTS

The sum of points for all		Evaluation on a	national scale		
types of educational activities	Rating ECTS	for an exam, course project (work), practice	for credit		
90 - 100	AND	perfectly			
82-89	IN	fine			
74-81	WITH	line	counted		
64-73	D	acticfactorily			
60-63	IS	satisfactority			
35-59	FX	unsatisfactory with the	not counted with the		
55-57	ГА	possibility of reassembly	possibility of retaking		
		unsatisfactory with mandatory	not enrolled with mandatory		
0 - 34	F	repeated study of the	repeated study of the		
		discipline	discipline		

13. Educational and methodological support

- a) work program of the academic discipline;
- b) syllabus;
- c) a synopsis of lectures on theoretical material;
- d) methodical instructions (recommendations) regarding the performance of control tasks;
- e) software and methodical support for the execution of tasks.

14. Recommended literature

Basic

- Andrunyk V.A., Vysotska V.A., Pasichnyk V.V., Chirun L.B., Chirun L.V. Numerical methods in computer sciences: a study guide. Lviv: "New World -2000", 2020. 470 p.
- 2. Weisfeld N. D. Equations of mathematical physics: teaching method. manual for students special "Applied mathematics" / N. D. Weisfeld, V. V. Reut. –

Odesa: Odesk. National University named after I. I. Mechnikova, 2018. 194 p.

- 3. Makhney O.V. Mathematical modeling. Ivano-Frankivsk: V.P. Suprun, 2015. 372 p.
- 4. Pavlovsky M.A. Theoretical mechanics. K.: Technika, 2002. 510 p.
- 5. Theoretical mechanics / V.M. Bulgakov, V.V. Yaremenko, O.M. Chernysh, M.G. Berezovy K.: Center for Educational Literature, 2019. 705 p.

Auxiliary

- 1. Karavanova T. P. Fundamentals of algorithmization and programming. 750 problems with recommendations and examples: Kyiv: Forum, 2002. 287 p.
- Konovalenko I. V., Marushchak P. O., Savkiv V. B. Programming in the C# 7.0 language: a study guide. Ternopil: Ternopil National Technical University named after Ivan Pulyu, 2017. 300 p.
- 3. Shakhno S. M., Dudykevich A. T., Levytska S. M. Workshop on numerical methods: study guide. Lviv: LNU named after Ivan Franko, 2013. 432 p.